Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pflugers Arch ; 476(5): 797-808, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38368293

RESUMO

A common anthracycline antibiotic used to treat cancer patients is doxorubicin (DOX). One of the effects of DOX therapy is skeletal muscle fatigue. Our goal in this research was to study the beneficial effect of exercise on DOX-induced damaged muscle fibers and compare the effect of different exercise strategies (prophylactic, post- toxicity and combined) on DOX toxicity. Five groups were created from 40 male rats: group I, control group; group II, DOX was administered intraperitoneally for 2 weeks over 6 equal injections (each 2.5 mg/kg); group III, rats trained for 3 weeks before DOX; group IV, rats trained for 8 weeks after DOX; and group V, rats were trained for 3 weeks before DOX followed by 8 weeks after. Measures of oxidative damage (H2O2, catalase), inflammation (TNF-α), and glucose transporter 4 (GLUT4) expression on skeletal muscle were assessed. Also, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) was estimated. Skeletal performance was evaluated by contraction time (CT), half relaxation time (1/2 RT), and force-frequency relationship by the end of this research. The current study demonstrated a detrimental effect of DOX on skeletal performance as evidenced by a significant increase in CT and 1/2 RT compared to control; in addition, H2O2, TNF-α, and HOMA-IR were significantly increased with a significant decrease in GLUT4 expression and catalase activity. Combined exercise therapy showed a remarkable improvement in skeletal muscle performance, compared to DOX, CT, and 1/2 RT which were significantly decreased; H2O2 and TNF-α were significantly decreased unlike catalase antioxidant activity that significantly increased; in addition, skeletal muscle glucose metabolism was significantly improved as GLUT4 expression significantly increased and HOMA-IR was significantly decreased. Exercise therapy showed significant improvement in all measured parameters relative to DOX. However, combined exercise therapy showed the best improvement relative to both pre-exercise and post-exercise groups.


Assuntos
Doxorrubicina , Transportador de Glucose Tipo 4 , Músculo Esquelético , Condicionamento Físico Animal , Animais , Masculino , Ratos , Antibióticos Antineoplásicos/toxicidade , Antibióticos Antineoplásicos/efeitos adversos , Catalase/metabolismo , Doxorrubicina/toxicidade , Doxorrubicina/efeitos adversos , Transportador de Glucose Tipo 4/metabolismo , Peróxido de Hidrogênio/metabolismo , Resistência à Insulina , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Doenças Musculares/induzido quimicamente , Doenças Musculares/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Condicionamento Físico Animal/métodos , Condicionamento Físico Animal/fisiologia , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
2.
Clin Exp Pharmacol Physiol ; 50(1): 96-106, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208078

RESUMO

The long-term side effect of the antiarrhythmic drug, amiodarone (AMIO), such as lung toxicity, remains a critical clinical issue. The previous knowledge denotes diverse antioxidant, anti-inflammatory, and antifibrotic properties of the anti-anginal drug, nicorandil (NI). Therefore, we aimed to investigate the possible protective effect of NI on pulmonary tissue remodelling following AMIO-induced lung toxicity. The included rats were assigned into four equal groups (n = 8): (1) control, (2) control group that received NI 10 mg kg-1  day-1 , (3) model group that received AMIO in a dose of 60 mg kg-1  day-1 , and (4) treated group (AMIO-NI) that were treated with AMIO plus NI as shown above. Drug administration continued for 10 weeks. AMIO resulted in deteriorated (p < 0.001) pulmonary functions accompanied by respiratory acidosis. AMIO showed an obvious histological injury score with intense collagen deposition, disturbed nitric oxide synthase enzymes (NOS/iNOS), and increased alpha smooth muscle actin expression. Furthermore, AMIO upregulated the transforming growth factor (TGF-ß1)/phosphoinositide-3 kinase (PI3K)-Akt1-p/mammalian target of rapamycin (mTOR) axis, which determined the possible mechanism of AMIO on pulmonary remodelling. NI treatment significantly (p < 0.001) prevented the AMIO-induced lung toxicity, as well as inhibited the TGF-ß1/PI3K/Akt1-p/mTOR axis in the lung tissue of rats. The results were confirmed by an in-vitro study. CONCLUSION: The current results revealed that NI was effective in preserving the lung structure and functions. Amelioration of the oxidative stress and modulation of TGF-ß1/PI3K/Akt1-p/mTOR have been achieved. This study suggests NI administration as a preventive therapy from the serious pulmonary fibrosis side effect of AMIO.


Assuntos
Amiodarona , Fosfatidilinositol 3-Quinase , Ratos , Animais , Fator de Crescimento Transformador beta1 , Amiodarona/toxicidade , Fosfatidilinositol 3-Quinases , Nicorandil/farmacologia , Sirolimo , Fibrose , Pulmão , Mamíferos , Serina-Treonina Quinases TOR
3.
Clin Exp Pharmacol Physiol ; 49(3): 406-418, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34796981

RESUMO

Cardiac dysfunction is one of the leading causes of death in epilepsy. The anti-arrhythmic drug, amiodarone, is under investigation for its therapeutic effects in epilepsy. We aimed to evaluate the possible effects of amiodarone on cardiac injury during status epilepticus, as it can cause prolongation of the QT interval. Five rat groups were enrolled in the study; three control groups (1) Control, (2) Control-lithium and (3) Control-Amio, treated with 150 mg/kg/intraperitoneal amiodarone, (4) Epilepsy model, induced by sequential lithium/pilocarpine administration, and (5) the epilepsy-Amio group. The model group expressed a typical clinical picture of epileptiform activity confirmed by the augmented electroencephalogram alpha and beta spikes. The anticonvulsive effect of amiodarone was prominent, it diminished (p < 0.001) the severity of seizures and hence, deaths and reduced serum noradrenaline levels. In the model group, the electrocardiogram findings revealed tachycardia, prolongation of the corrected QT (QTc) interval, depressed ST segments and increased myocardial oxidative stress. The in-vitro myocardial performance (contraction force and - (df/dt)max ) was also reduced. Amiodarone decreased (p < 0.001) the heart rate, improved ST segment depression, and myocardial contractility with no significant change in the duration of the QTc interval. Amiodarone preserved the cardiac histological structure and reduced the myocardial injury markers represented by serum Troponin-I, oxidative stress and IL-1. Amiodarone pretreatment prevented the anticipated cardiac injury induced during epilepsy. Amiodarone possessed an anticonvulsive potential, protected the cardiac muscle and preserved its histological architecture. Therefore, amiodarone could be recommended as a protective therapy against cardiac dysfunction during epileptic seizures with favourable effect on seizure activity.


Assuntos
Amiodarona/uso terapêutico , Antiarrítmicos/uso terapêutico , Epilepsia/complicações , Cardiopatias/tratamento farmacológico , Cardiopatias/etiologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/toxicidade , Animais , Biomarcadores/sangue , Epilepsia/induzido quimicamente , Glutationa/sangue , Interleucina-1/metabolismo , Cloreto de Lítio/administração & dosagem , Cloreto de Lítio/toxicidade , Masculino , Malondialdeído/sangue , Agonistas Muscarínicos/administração & dosagem , Agonistas Muscarínicos/toxicidade , Contração Miocárdica/efeitos dos fármacos , Pilocarpina/administração & dosagem , Pilocarpina/toxicidade , Ratos , Ratos Wistar , Superóxido Dismutase/sangue , Troponina I/sangue
4.
Am J Physiol Gastrointest Liver Physiol ; 321(5): G461-G476, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34431405

RESUMO

Multiple theories have been proposed describing the pathogenic mechanisms of Helicobacter pylori (H. pylori)-associated gastric motility disorders. We assessed ex vivo pyloric activity in H. pylori-infected rats, and tried to explore the associated ghrelin hormone alteration and pyloric fibrogenesis. In addition, miR-1 was assessed in pyloric tissue samples, being recently accused of having a role in smooth muscle dysfunction. Ninety adult male Wistar albino rats were assigned into nine groups: 1) control group, 2) sterile broth (vehicle group), 3) amoxicillin control, 4) omeperazole control, 5) clarithromycin control, 6) triple therapy control, 7) H. pylori- group, 8) H. pylori-clarithromycin group, and 9) H. pylori-triple therapy group. Urease enzyme activity was applied as an indicator of H. pylori infection. Ex vivo pyloric contractility was evaluated. Serum ghrelin was assessed, and histological tissue evaluation was performed. Besides, pyloric muscle miR-1 expression was measured. The immunological epithelial to mesenchymal transition (EMT) markers; transforming growth factor ß (TGFß), α-smooth muscle actin (α-SMA), and E-cadherin-3 were also evaluated. By H. pylori infection, a significant (P < 0.001) reduced pyloric contractility index was recorded. The miR-1 expression was decreased (P < 0.001) in the H. pylori-infected group, associated with reduced serum ghrelin, elevated TGFß, and α-SMA levels and reduced E-cadherin levels. Decreased miR-1 and disturbed molecular pattern were improved by treatment. In conclusion, H. pylori infection was associated with reduced miR-1, epithelial to mesenchymal transition, and pyloric hypomotility. The miR-1 may be a target for further studies to assess its possible involvement in H. pylori-associated pyloric dysfunction, which might help in the management of human H. pylori manifestations and complications.NEW & NOTEWORTHY This work is investigating functional, histopathological, and molecular changes underlying Helicobacter pylori hypomotility and is correlating these with miR-1, whose disturbance is supposed to be involved in smooth muscle dysfunction and cell proliferation according to literature. Epithelial to mesenchymal transition and reduced ghrelin hormone may contribute to H. pylori infection-associated hypomotility. H. pylori infection was associated with reduced pyloric miR-1 expression. Targeting miR-1 could be valuable in the clinical management of pyloric hypofunction.


Assuntos
Transição Epitelial-Mesenquimal , Motilidade Gastrointestinal , Infecções por Helicobacter/microbiologia , Helicobacter pylori/patogenicidade , Músculo Liso/microbiologia , Piloro/microbiologia , Gastropatias/microbiologia , Actinas/metabolismo , Animais , Antibacterianos/farmacologia , Caderinas/metabolismo , Modelos Animais de Doenças , Quimioterapia Combinada , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Motilidade Gastrointestinal/efeitos dos fármacos , Grelina/sangue , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/fisiopatologia , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Músculo Liso/fisiopatologia , Inibidores da Bomba de Prótons/farmacologia , Piloro/efeitos dos fármacos , Piloro/metabolismo , Piloro/fisiopatologia , Ratos Wistar , Gastropatias/tratamento farmacológico , Gastropatias/metabolismo , Gastropatias/fisiopatologia , Fator de Crescimento Transformador beta/metabolismo
5.
Can J Physiol Pharmacol ; 99(4): 411-417, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32822562

RESUMO

Despite that cyclosporine-A (CsA) is a widely used immunosuppressive drug, its nephrotoxic effect limits its long-term administration. Herein we tried to investigate its renal effect on endothelial dysfunction targeting the hypoxia-inducible factor (HIF-1α) / vascular endothelial growth factor (VEGF) / endothelial nitric oxide synthase (eNOS) pathway and the possible modulation by nicorandil. Eight groups of adult male Wistar rats were included: (1) control; (2) vehicle group (received oil); (3) glibenclamide 5 mg·kg-1·day-1 administered orally; (4) nicorandil 10 mg·kg-1·day-1 administered orally; (5) CsA 25 mg·kg-1·day-1 administered orally; (6) combined administration of CsA and nicorandil; (7) glibenclamide was added to CsA; and (8) both CsA and nicorandil were combined with glibenclamide. The treatment continued for six weeks. Combined nicorandil with CsA improved renal function deterioration initiated by CsA. CsA decreased the renal expression levels (P < 0.001) of HIF-1α, eNOS, and VEGF, inducing endothelial dysfunction and triggering inflammation, and upregulated the profibrotic marker transforming growth factor (TGF-ß). Nicorandil fixed the disturbed HIF-1α/VEGF/eNOS signaling. Nicorandil corrected the renal functions, confirmed by the improved histological glomerular tuft retraction that was obvious in the CsA group, without significant influence by glibenclamide. Proper protection from CsA-induced nephrotoxicity was achieved by nicorandil. Nicorandil reversed the disturbed HIF-1α/VEGF/eNOS pathway created by CsA.


Assuntos
Ciclosporina/efeitos adversos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/efeitos dos fármacos , Nicorandil/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Rim/citologia , Rim/metabolismo , Masculino , Ratos
6.
Clin Exp Pharmacol Physiol ; 47(11): 1791-1797, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32881062

RESUMO

At present, there is yet no specific antiviral treatment or immunization against the newly identified human severe acute respiratory syndrome virus (SARS-CoV2) that results in a rapidly progressive pandemic coronavirus disease 2019 (COVID-19). We believe in a crucial need for a clinical strategy to counteract this viral pandemic based on the known pathogenesis throughout the disease course. Evidence suggests that exaggerated patient's inflammatory response and oxidative stress are likely to aggravate the disease pathology. The resulting endothelial dysfunction further induces fibrosis and coagulopathy. These disturbances can generate severe acute respiratory distress syndrome (ARDS) that can progress into respiratory and circulatory failure. Nicorandil is an anti-anginal vasodilator drug acts by increasing nitric oxide bioavailability and opening of the KATP channel. Recently, nicorandil has been recognized to possess multiple protective effects against tissue injury. Here, we address a possible modulatory role of nicorandil against COVID-19 pathogenesis. We hypothesise nicorandil would be an effective form of adjuvant therapy against COVID-19.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Nicorandil/uso terapêutico , Pneumonia Viral/tratamento farmacológico , Vasodilatadores/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Anticoagulantes/uso terapêutico , Antioxidantes/uso terapêutico , COVID-19 , Infecções por Coronavirus/fisiopatologia , Fibrose/prevenção & controle , Humanos , Pandemias , Pneumonia Viral/fisiopatologia , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA